Selection of Features for Emotion Recognition from Speech
نویسندگان
چکیده
منابع مشابه
Emotion Recognition from Speech using Discriminative Features
Creating an accurate Speech Emotion Recognition (SER) system depends on extracting features relevant to that of emotions from speech. In this paper, the features that are extracted from the speech samples include Mel Frequency Cepstral Coefficients (MFCC), energy, pitch, spectral flux, spectral roll-off and spectral stationarity. In order to avoid the 'curse of dimensionality', statis...
متن کاملEmotion recognition from speech using prosodic features
Emotion recognition, a key step of affective computing, is the process of decoding an embedded emotional message from human communication signals, e.g. visual, audio, and/or other physiological cues. It is well-known that speech is the main channel for human communication and thus vital in the signalling of emotion and semantic cues for the correct interpretation of contexts. In the verbal chan...
متن کاملExtracting MFCC Features For Emotion Recognition From Audio Speech Signals
A major challenge for automatic speech recognition (ASR) relates to significant performance reduction in noisy environments. Recent research has shown that auditory features based on Gammatone filters are promising to improve robustness of ASR systems against noise, though the research is far from extensive and generalizability of the new features is unknown. This paper presents our implementat...
متن کاملAmplitude modulation features for emotion recognition from speech
The goal of speech emotion recognition (SER) is to identify the emotional or physical state of a human being from his or her voice. One of the most important things in a SER task is to extract and select relevant speech features with which most emotions could be recognized. In this paper, we present a smoothed nonlinear energy operator (SNEO)-based amplitude modulation cepstral coefficients (AM...
متن کاملExtracting GFCC Features for Emotion Recognition from Audio Speech Signals
A major challenge for automatic speech recognition (ASR) relates to significant performance reduction in noisy environments. This paper presents our implementation of the Gammatone frequency cepstral coefficients (GFCCs) filter-based feature along with BPNN and the experimental results on English speech data. By some thorough designs, we obtained significant performance gains with the new featu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Science and Technology
سال: 2016
ISSN: 0974-5645,0974-6846
DOI: 10.17485/ijst/2016/v9i39/95585